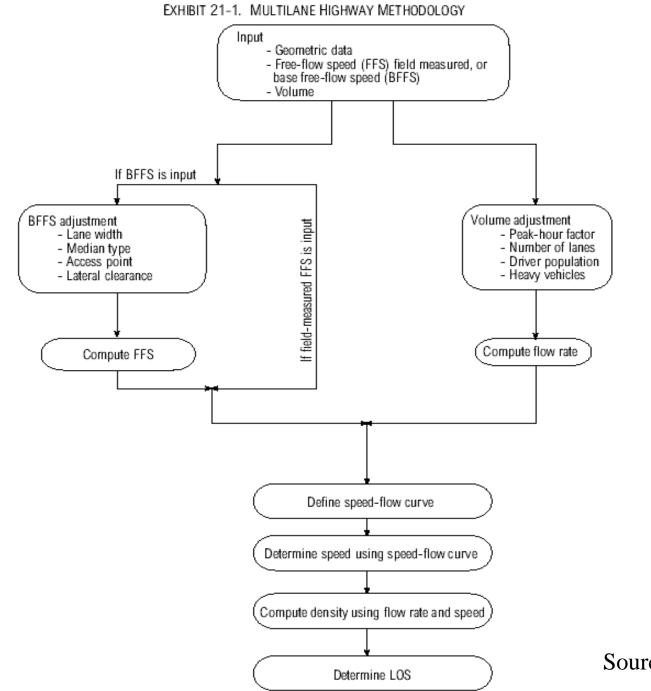
Multilane Highways

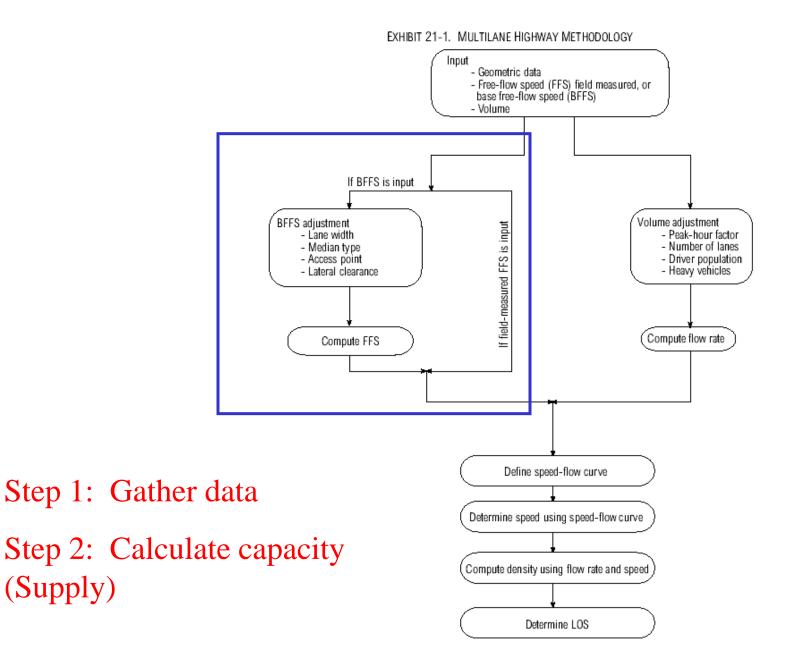
(a) Divided multilane highway in a rural environment.

(b) Divided multilane highway in a suburban environment.

(c) Undivided multilane highway in a rural environment.

(d) Undivided multilane highway in a suburban environment.

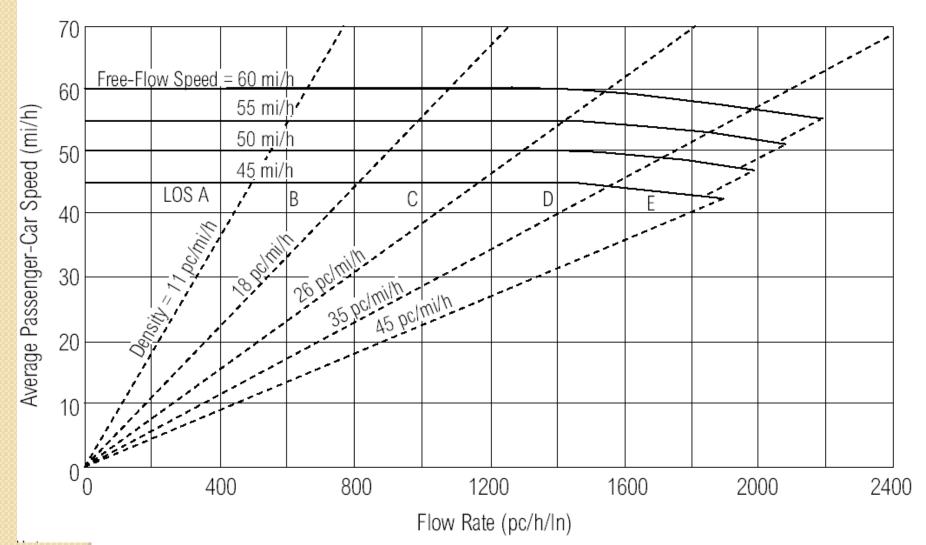

Multilane Highways


- Chapter 21 of the Highway Capacity Manual
- For rural and suburban multilane highways
- Assumptions (Ideal Conditions, all other conditions reduce capacity):
 - Only passenger cars
 - No direct access points
 - A divided highway
 - FFS > 60 mph
 - Represents highest level of multilane rural and suburban highways

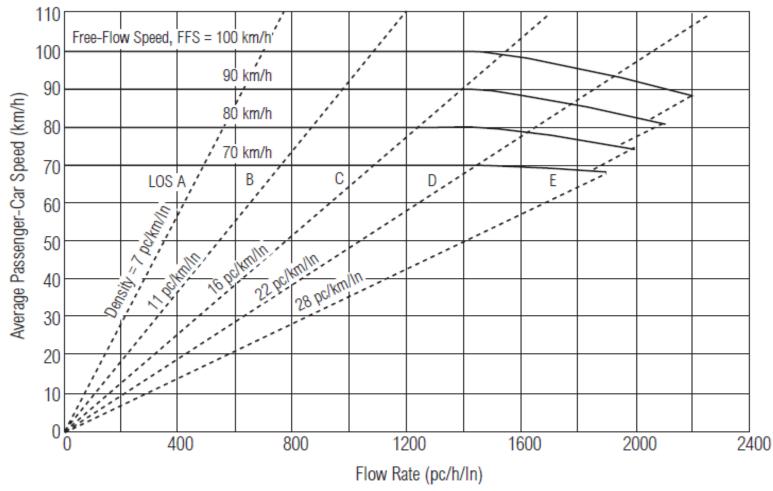
Multilane Highways

- Intended for analysis of uninterruptedflow highway segments
 - Signal spacing > 2.0 miles
 - No on-street parking
 - No significant bus stops
 - No significant pedestrian activities

				LOS		
Free-Flow Speed	Criteria	А	В	С	D	E
60 mi/h Maximum density (pc/mi/ln)		11	18	26	35	40
	Average speed (mi/h)	60.0	60.0	59.4	56.7	55.0
	Maximum volume to capacity ratio (v/c)	0.30	0.49	0.70	0.90	1.00
	Maximum service flow rate (pc/h/ln)	660	1080	1550	1980	2200
55 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	41
	Average speed (mi/h)	55.0	55.0	54.9	52.9	51.2
	Maximum v/c	0.29	0.47	0.68	0.88	1.00
	Maximum service flow rate (pc/h/ln)	600	990	1430	1850	2100
50 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	43
	Average speed (mi/h)	50.0	50.0	50.0	48.9	47.5
	Maximum v/c	0.28	0.45	0.65	0.86	1.00
	Maximum service flow rate (pc/h/ln)	550	900	1300	1710	2000
45 mi/h	Maximum density (pc/mi/ln)	11	18	26	35	45
	Average speed (mi/h)	45.0	45.0	45.0	44.4	42.2
	Maximum v/c	0.26	0.43	0.62	0.82	1.00
	Maximum service flow rate (pc/h/ln)	490	810	1170	1550	1900


EXHIBIT 21-2. LOS CRITERIA FOR MULTILANE HIGHWAYS

Note:


The exact mathematical relationship between density and volume to capacity ratio (v/c) has not always been maintained at LOS boundaries because of the use of rounded values. Density is the primary determinant of LOS. LOS F is characterized by highly unstable and variable traffic flow. Prediction of accurate flow rate, density, and speed at LOS F is difficult.

Sourc

EXHIBIT 21-3. SPEED-FLOW CURVES WITH LOS CRITERIA

EXHIBIT 21-3. SPEED-FLOW CURVES WITH LOS CRITERIA

Note:

Maximum densities for LOS E occur at a v/c ratio of 1.0. They are 25, 26, 27, and 28 pc/km/ln at FFS of 100, 90, 80, and 70 km/h, respectively. Capacity varies by FFS. Capacity is 2,200, 2,100, 2,000, and 1,900 pc/h/ln at FFS of 100, 90, 80, and 70 km/h, respectively.

For flow rate (v_p) , $v_p > 1400$ and 90 < FFS \leq 100 then

Multilane highway Free Flow Speed FFS

ESTIMATING FFS

The FFS can be estimated indirectly when field data are not available.

$$FFS = BFFS - f_{LW} - f_{LC} - f_M - f_A$$

where

- BFFS = base FFS (mi/h);
 - FFS = estimated FFS (mi/h);
 - f_{LW} = adjustment for lane width, from Exhibit 21-4 (mi/h);

 f_{LC} = adjustment for lateral clearance, from Exhibit 21-5 (mi/h);

 f_M = adjustment for median type, from Exhibit 21-6 (mi/h); and

 f_A = adjustment for access points, from Exhibit 21-7 (mi/h).

• Base Conditions: 12 ft lanes

EXHIBIT 21-4. ADJUSTMENT FOR LANE WIDTH

Lane Width (ft)	Reduction in FFS (mi/h)
12	0.0
11	1.9
10	6.6

Lane Width (Example)

EXHIBIT 21-4. ADJUSTMENT FOR LANE WIDTH

Lane Width (ft)	Reduction in FFS (mi/h)		
12	0.0		
11	1.9		
10	6.6		

How much does use of 10-foot lanes decrease free flow speed?

 $\underline{\mathbf{F}}_{\underline{\mathbf{lw}}} = \mathbf{6.6 mph}$

Lateral Clearance

- Distance to fixed objects
- Assumes
 - >= 6 feet from right edge of travel lanes to obstruction
 - >= 6 feet from left edge of travel lane to object in median

Lateral Clearance

 $TLC = LC_{R} + LC_{L}$

TLC = total lateral clearance in feet

- LC_R = lateral clearance from right edge of travel lane
- LC_L= lateral clearance from left edge of travel lane

Four-Lane	Highways	Six-Lane Highways			
Total Lateral Clearance ^a (ft)	Reduction in FFS (mi/h)	Total Lateral Clearance ^a (ft)	Reduction in FFS (mi/		
12	0.0	12	0.0		
10	0.4	10	0.4		
8	0.9	8	0.9		
6	1.3	6	1.3		
4	1.8	4	1.7		
2	3.6	2	2.8		
0	5.4	0	3.9		

EXHIBIT 21-5. ADJUSTMENT FOR LATERAL CLEARANCE

Note:

a. Total lateral clearance is the sum of the lateral clearances of the median (if greater than 6 ft, use 6 ft) and shoulder (if gr than 6 ft, use 6 ft). Therefore, for purposes of analysis, total lateral clearance cannot exceed 12 ft.

Four-La	ne Highways	Six-Lane Highways		
Total Lateral Clearance (ft)	Reduction in FFS (mi/h)	Total Lateral Clearance ^a (ft)	Reduction in FFS (mi/	
12	0.0	12	0.0	
10	0.4	10	0.4	
8	0.9	8	0.9	
6	1.3	6	1.3	
4	4 1.8		1.7	
2	2 3.6		2.8	
0	5.4	0	3.9	

EXHIBIT 21-5. ADJUSTMENT FOR LATERAL CLEARANCE

Note:

a. Total lateral clearance is the sum of the lateral clearances of the median (if greater than 6 ft, use 6 ft) and shoulder (if gr than 6 ft, use 6 ft). Therefore, for purposes of analysis, total lateral clearance cannot exceed 12 ft.

Example: Calculate lateral clearance adjustment for a 4-lane divided highway with milepost markers located 4 feet to the right of the travel lane.

$$TLC = LC_{R} + LC_{L} = 6 + 4 = 10$$

 $\underline{\mathbf{F}_{lc}} = \mathbf{0.4 mph}$

EXHIBIT 21-6. ADJUSTMENT FOR MEDIAN TYPE

Median Type	Reduction in FFS (mi/h)
Undivided highways	1.6
Divided highways (including TWLTLs)	0.0

 f_m : Accounts for friction between opposing directions of traffic in adjacent lanes for undivided

No adjustment for divided, $f_m = I$

EXHIBIT 21-7. ACCESS-POINT DENSITY ADJUSTMENT

A	ccess Points/Mile	Reduction in FFS ((mi/h)
	0	0.0	
-	10	2.5	
	20	5.0	
	30	7.5	
	≥ 40	10.0	

 F_a accounts for interruption due to access points along the facility

Example: if there are 20 access points per mile, what is the reduction in free flow speed?

<u>F_a = 5.0 mph</u>

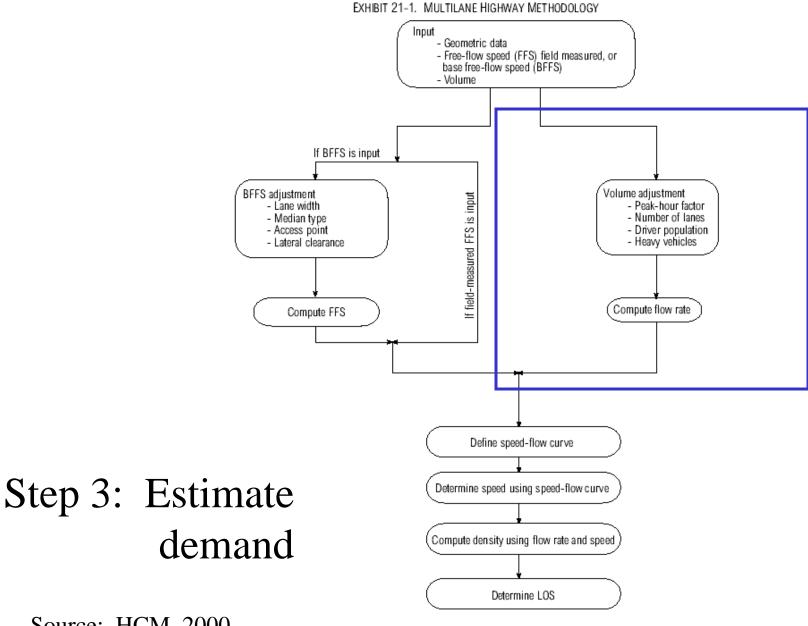
Estimate Free flow Speed

ESTIMATING FFS

The FFS can be estimated indirectly when field data are not available.

$$FFS = BFFS - f_{LW} - f_{LC} - f_M - f_A$$

where


BFFS = base FFS (mi/h);

FFS = estimated FFS (mi/h);

- f_{LW} = adjustment for lane width, from Exhibit 21-4 (mi/h);
- f_{LC} = adjustment for lateral clearance, from Exhibit 21-5 (mi/h);
- f_M = adjustment for median type, from Exhibit 21-6 (mi/h); and
- f_A = adjustment for access points, from Exhibit 21-7 (mi/h).

BFFS = free flow under ideal conditions FFS = free flow adjusted for actual conditions From previous examples:

FFS = 60 mph - 6.6 mph - 0.4 mph - 0 - 5.0 mph = 48 mph (reduction of 12 mph)

Multilane highway Flow rate

$$v_p = \frac{V}{PHF * N * f_{HV} * f_p}$$

where

- $v_p = 15$ -min passenger-car equivalent flow rate (pc/h/ln),
 - V =hourly volume (veh/h),

- N = number of lanes,
- f_{HV} = heavy-vehicle adjustment factor, and
 - f_p = driver population factor.

Heavy Vehicle Adjustment

- Heavy vehicles affect traffic
- Slower, larger
- f_{hv} increases number of passenger vehicles to account for presence of heavy trucks

$$f_{HV} = \frac{1}{1 + P_T (E_T - 1) + P_R (E_R - 1)}$$
(2)

where

- E_T, E_R = passenger-car equivalents for trucks and buses and for recreational vehicles (RVs), respectively;
- P_T, P_R = proportion of trucks and buses, and RVs, respectively, in the traffic stream (expressed as a decimal fraction); and

$$f_{HV}$$
 = adjustment factor for heavy vehicles.

fhv General Grade Definitions:

- Level: combination of alignment (horizontal and vertical) that allows heavy vehicles to maintain same speed as pass. cars (includes short grades 2% or less)
- Rolling: combination that causes heavy vehicles to reduce speed substantially below P.C. (but not crawl speed for any length)
- Mountainous: Heavy vehicles at crawl speed for significant length or frequent intervals
- Use specific grade approach if grade less than 3% is more than I mile or grade more than 3% is more than 0.5 mile)

EXHIBIT 21-8. PASSENGER-CAR EQUIVALENTS ON EXTENDED GENERAL HIGHWAY SEGMENTS

		Type of Terrain					
Factor	Lovol	Rolling	Mountainous				
E_{T} (trucks and buses)	1.5	2.5	4.5				
E _R (RVs)	1.2	2.0	4.0				

Example: for 10% heavy trucks on rolling terrain, what is F_{hv} ?

For rolling terrain, $E_T = 2.5$

$$F_{hv} = \underline{1} = \underline{0.87}$$

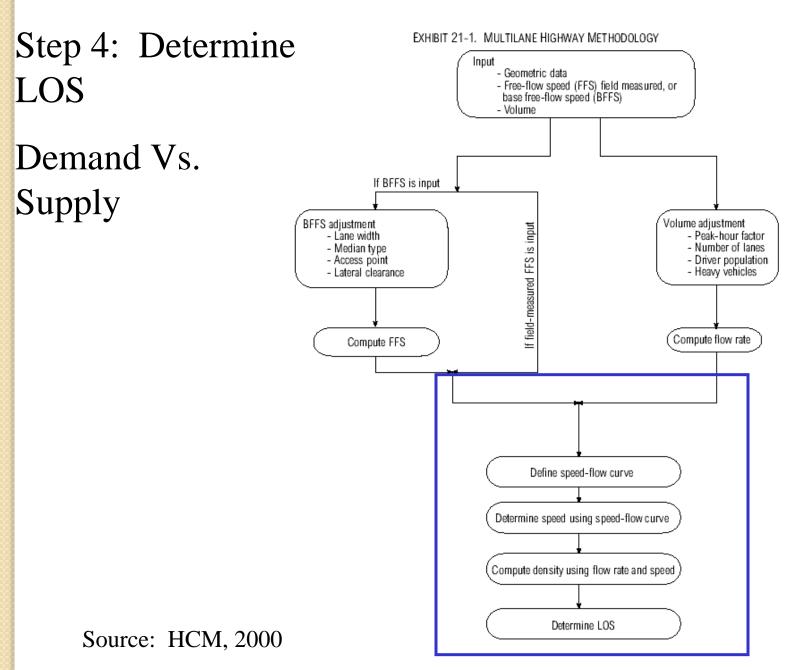
1 + 0.1 (2.5 - 1)

$$f_{HV} = \frac{1}{1 + P_T (E_T - 1) + P_R (E_R - 1)}$$

						Ε _Τ				
Upgrade	Length			Р	ercentage	of Trucks	s and Bus	es		
(%)	(km)	2	4	5	6	8	10	15	20	25
<2	All	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	0.0-0.4	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.4–0.8	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
≥ 2–3	> 0.8–1.2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 1.2–1.6	2.0	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5
	> 1.6–2.4	2.5	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0
	> 2.4	3.0	3.0	2.5	2.5	2.0	2.0	2.0	2.0	2.0
	0.0-0.4	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.4–0.8	2.0	2.0	2.0	2.0	2.0	2.0	1.5	1.5	1.5
> 3–4	> 0.8–1.2	2.5	2.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	> 1.2–1.6	3.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0
	> 1.6–2.4	3.5	3.5	3.0	3.0	3.0	3.0	2.5	2.5	2.5
	> 2.4	4.0	3.5	3.0	3.0	3.0	3.0	2.5	2.5	2.5
	0.0-0.4	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.4–0.8	3.0	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0
> 4–5	> 0.8–1.2	3.5	3.0	3.0	3.0	2.5	2.5	2.5	2.5	2.5
	> 1.2–1.6	4.0	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0
	> 1.6	5.0	4.0	4.0	4.0	3.5	3.5	3.0	3.0	3.0
	0.0-0.4	2.0	2.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.4–0.5	4.0	3.0	2.5	2.5	2.0	2.0	2.0	2.0	2.0
> 5–6	> 0.5–0.8	4.5	4.0	3.5	3.0	2.5	2.5	2.5	2.5	2.5
	> 0.8–1.2	5.0	4.5	4.0	3.5	3.0	3.0	3.0	3.0	3.0
	> 1.2–1.6	5.5	5.0	4.5	4.0	3.0	3.0	3.0	3.0	3.0
	> 1.6	6.0	5.0	5.0	4.5	3.5	3.5	3.5	3.5	3.5
	0.0-0.4	4.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0
	> 0.4-0.5	4.5	4.0	3.5	3.5	3.5	3.0	2.5	2.5	2.5
> 6	> 0.5–0.8	5.0	4.5	4.0	4.0	3.5	3.0	2.5	2.5	2.5
	> 0.8–1.2	5.5	5.0	4.5	4.5	4.0	3.5	3.0	3.0	3.0
	> 1.2–1.6	6.0	5.5	5.0	5.0	4.5	4.0	3.5	3.5	3.5
	>1.6	7.0	6.0	5.5	5.5	5.0	4.5	4.0	4.0	4.0

EXHIBIT 21-9. PASSENGER-CAR EQUIVALENTS FOR TRUCKS AND BUSES ON UNIFORM UPGRADES

		E _R								
Grade	Length				Perc	entage of F	RVs			
(%)	(km)	2	4	5	6	8	10	15	20	25
≤2	All	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
> 2–3	0.0-0.8	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	> 0.8	3.0	1.5	1.5	1.5	1.5	1.5	1.2	1.2	1.2
	0.0-0.4	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
> 3-4	> 0.40.8	2.5	2.5	2.0	2.0	2.0	2.0	1.5	1.5	1.5
	> 0.8	3.0	2.5	2.5	2.5	2.0	2.0	2.0	1.5	1.5
	0.0-0.4	2.5	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5
> 4–5	> 0.40.8	4.0	3.0	3.0	3.0	2.5	2.5	2.0	2.0	2.0
	> 0.8	4.5	3.5	3.0	3.0	3.0	2.5	2.5	2.0	2.0
	0.0-0.4	4.0	3.0	2.5	2.5	2.5	2.0	2.0	2.0	1.5
> 5	> 0.4–0.8	6.0	4.0	4.0	3.5	3.0	3.0	2.5	2.5	2.0
	> 0.8	6.0	4.5	4.0	4.5	3.5	3.0	3.0	2.5	2.0


EXHIBIT 21-10. PASSENGER-CAR EQUIVALENTS FOR RVS ON UNIFORM UPGRADES

		E _T				
Downgrade	Length		Percentage	e of Trucks		
(%)	(km)	5	10	15	20	
< 4	All	1.5	1.5	1.5	1.5	
4–5	≤ 6.4	1.5	1.5	1.5	1.5	
4–5	> 6.4	2.0	2.0	2.0	1.5	
45 > 56 > 56	≤ 6.4	1.5	1.5	1.5	1.5	
> 5-6	> 6.4	5.5	4.0	4.0	3.0	
> 6	≤ 6.4	1.5	1.5	1.5	1.5	
> 6	> 6.4	7.5	6.0	5.5	4.5	

EXHIBIT 21-11. PASSENGER-CAR EQUIVALENTS FOR TRUCKS ON DOWNGRADES

Driver Population Factor (f_p)

- Non-familiar users affect capacity
- $f_p = I$, familiar users
- $I > f_p >= 0.85$, unfamiliar users

Calculate v_p

$$v_p = \frac{V}{PHF * N * f_{HV} * f_p}$$

- Example: base volume is 2,500 veh/hour
 PHF = 0.9, N = 2
- f_{hv} from previous, $f_{hv} = 0.87$
- Non-familiar users, $f_p = 0.85$

$$v_p = 2,500 \text{ vph} = 1878 \text{ pc/ph/pl}$$

0.9 x 2 x 0.87 x 0.85

Calculate Density

$$D = \frac{V_p}{S}$$

(21-5)

where

- D = density (pc/mi/ln),
- v_p = flow rate (pc/h/ln), and
- \dot{S} = average passenger-car travel speed (mi/h).

Example: for previous

$$D = \underline{1878 \text{ vph}} = \underline{39.1 \text{ pc/mi/lane}}$$

$$48 \text{ mph}$$

70 Free-Flow Speed = 60 mi/ 60 55 mi/h Average Passenger-Car Speed (mi/h) 50 mi/h 50 FO THI/T LOS A 40 30 50 bc1 35 20 10 0 400 800 1200 1600 2000 2400 Flow Rate (pc/h/ln)

EXHIBIT 21-3. SPEED-FLOW CURVES WITH LOS CRITERIA

Also, D = 39.1 $p_{R4}/mi/ln$, LOS E

Design Decision

- What can we change in a design to provide an acceptable LOS?
- Lateral clearance (only 0.4 mph)
- Lane width
- Number of lanes

Lane Width (Example)

EXHIBIT 21-4. ADJUSTMENT FOR LANE WIDTH

Lane Width (ft)	Reduction in FFS (mi/h)		
12	0.0		
11	1.9		
10	6.6		

How much does use of 10 foot lanes decrease free flow speed?

 $\underline{\mathbf{F}}_{\underline{\mathbf{lw}}} = \mathbf{6.6 \ mph}$

Recalculate Density

$$=\frac{V_p}{S}$$

(21-5)

where

- D = density (pc/mi/ln),
- v_p = flow rate (pc/h/ln), and
- S = average passenger-car travel speed (mi/h).

Example: for previous (but with wider lanes)

D

$$D = \underline{1878 \text{ vph}} = \underline{34.1 \text{ pc/mi/lane}}$$
55 mph

70 Free-Flow Speed = 60 mi/J 60 55 mi/h Average Passenger-Car Speed (mi/h) <u>50 mi/h</u> 50 45 mi/h LOS A 40 30 50 bc, 20 10 0 400 800 1200 1600 2000 2400 Flow Rate (pc/h/ln)

EXHIBIT 21-3. SPEED-FLOW CURVES WITH LOS CRITERIA

Now D = 34.1 pc/mi/ln, on border of LOS E

• Recalculate v_p , while adding a lane

$$v_p = \frac{V}{PHF * N * f_{HV} * f_p}$$

- Example: base volume is 2,500 veh/hour
- PHF = 0.9, N = 3
- f_{hv} from previous, $f_{hv} = 0.87$
- Non-familiar users, $f_p = 0.85$

$$v_p = 2,500 \text{ vph} = 1252 \text{ pc/ph/pl}$$

0.9 x 3 x 0.87 x 0.85

Calculate Density

$$=\frac{V_p}{S}$$

(21-5)

where

- D = density (pc/mi/ln),
- v_p = flow rate (pc/h/ln), and
- \hat{S} = average passenger-car travel speed (mi/h).

Example: for previous

$$D = \underline{1252 \text{ vph}} = \underline{26.1 \text{ pc/mi/lane}}$$

$$48 \text{ mph}$$

D

70 Free-Flow Speed = 60 mi/J 60 55 mi/h Average Passenger-Car Speed (mi/h) 50 mi/h 50 +J 111/1 LOS A 40 30 28 pc/ 20 10 0 400 800 1200 1600 2000 2400 Flow Rate (pc/h/ln)

EXHIBIT 21-3. SPEED-FLOW CURVES WITH LOS CRITERIA

Now D = 26.1 pc/mi/ln, LOS D (almost C)

Example:

a divided multilane highway in rolling terrain and has an access density of 10 accesses/mile in the southerly direction and 4 accesses / mile in the northerly direction with the following features:

-Four II ft wide lanes

- obstruction 4 ft away from the travelled lane on the right side and 8 ft wide median

- the basic free flow speed is 52 mph

- -Peak hour volume is 2300 veh/hr/direction
- 10% trucks
- PHF is 0.9

What LOS can be expected in this segment

Solution :

ESTIMATING FFS

The FFS can be estimated indirectly when field data are not available.

$$FFS = BFFS - f_{LW} - f_{LC} - f_M - f_A$$

where

BFFS = base FFS (mi/h);

FFS = estimated FFS (mi/h);

 f_{LW} = adjustment for lane width, from Exhibit 21-4 (mi/h);

 f_{LC} = adjustment for lateral clearance, from Exhibit 21-5 (mi/h);

 f_M = adjustment for median type, from Exhibit 21-6 (mi/h); and

 f_A = adjustment for access points, from Exhibit 21-7 (mi/h).

$$F_{Iw} = 1.9 \text{ mph}$$
 $F_{Ic} = 0.4 \text{ mph} (LC = 4+6=10)$ $F_{M} = 0.0 \text{ mph} (divided)$

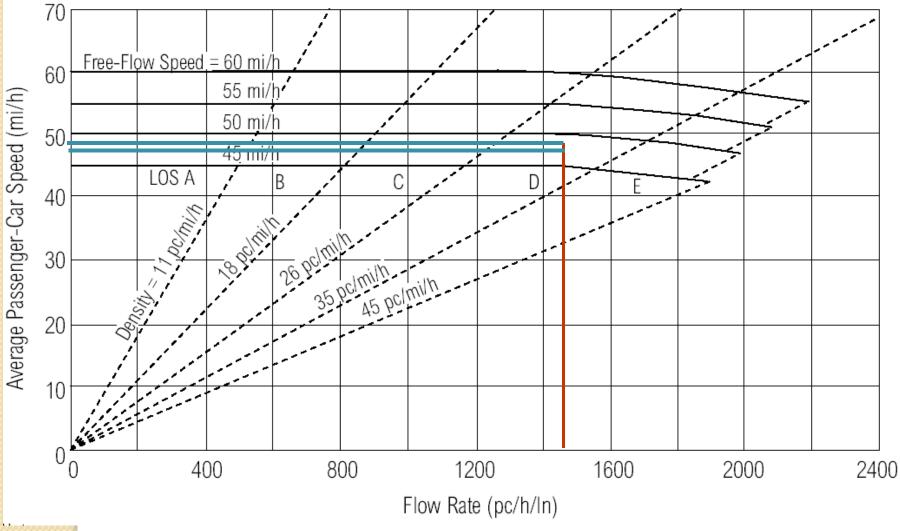
FA South= 2.5 mph (10 access points/mile) FA North= 1.0 mph (4 access points/mile)

FFS (south) = 52 - 1.9 - 0.4 - 0 - 2.5 = 47.2 mph

FFS (north) = 52 - 1.9 - 0.4 - 0 - 1.0 = 48.7 mph

$$v_p = \frac{V}{PHF * N * f_{HV} * f_p}$$

where


- $v_p = 15$ -min passenger-car equivalent flow rate (pc/h/ln),
- V = hourly volume (veh/h),
- *PHF* = peak-hour factor,
 - N = number of lanes,
 - f_{HV} = heavy-vehicle adjustment factor, and
 - f_p = driver population factor.

V = 2300 vph Rolling terrain 10% truck PHF = 0.9 N =2

 $F_{hv} = 1/(1 + 0.1 (2.5 - 1)) = 0.870$

 $V_p = 2300 / (0.9 * 2 * 0.87 * I) = I469 pc/h/ln$

EXHIBIT 21-3. SPEED-FLOW CURVES WITH LOS CRITERIA

LOS = D